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Abstract. Inclusive cross-sections for gluon jet production are studied numerically in the perturbative QCD
pomeron model for pA and central AA collisions at high energies. Two forms for the inclusive cross-sections,
with and without emission from the triple pomeron vertex, are compared. The difference was found to
reduce to a numerical factor ∼ 0.7 ÷ 0.8 for momenta below the saturation momentum Qs. Above Qs no
difference was found at all. For pA collisions the gluon spectrum was found to be ∼ A0.7 at momenta k
below Qs and ∼ A0.9 above it. For central AA collisions it was found to be ∼ A at momenta k below Qs

and ∼ A1.1 above it. At large k the spectrum goes like 1/k2.7÷3.3, flattening with energy. The multiplicities
turned out to be proportional to A0.7 for pA collisions and A for central AA collisions with a good precision.
In the latter case they are becoming more peaked at the center with the growth of energy. Their absolute
values are high and grow rapidly with energy in accordance with the high value of the BFKL intercept.

1 Introduction

New experimental data on heavy-ion collisions at RHIC
and the prospect of such data to be obtained at LHC
in the future made the spectra of produced secondaries
and in particular their dependence on the atomic num-
ber of colliding nuclei attract much attention. One would
like to have relevant predictions based on the fundamen-
tal theory and not purely phenomenological. At present
the only candidate for this is the hard pomeron model de-
rived from perturbative QCD. Originally constructed for
the description of high-energy low-x hadronic scattering
(the BFKL model [1]) it has subsequently been general-
ized to hadronic or deep inelastic scattering on nuclei [2,3]
and nucleus–nucleus scattering [4]. The model suffers from
a serious drawback related to the use of a fixed and not
running strong coupling constant. Curing it does not look
too promising, since due to the absence of ordering of mo-
menta in the model, it also means solving the confinement
problem. However in spite of this defect the model seems
to describe high-energy phenomena in a qualitatively rea-
sonable manner. Also, attempts to include the running of
the coupling in some effective way have shown that the
effect of the running is not at all overwhelming, although
this introduces some quantitative changes into the predic-
tions. So, also for lack of something better, the perturbative
QCD pomeron model appears to give a reasonable basis for
the discussion of particle production in very high-energy
heavy-ion collisions. Of course due to the perturbative char-
acter of the model it can only give predictions for the pro-
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duction of jets, leaving jet-to-hadrons conversion to the
non-perturbative fragmentation mechanism. Also it has to
be stressed that the model is, by construction, oriented
towards very high (asymptotic) energies or, equivalently,
very low values of x. So its application to present-day en-
ergies does not seem to be fully justified, at least in the
lowest order of perturbation expansion to be used in the
present calculations. This has to be kept in mind when
comparing the prediction of the model with the existing
experimental data.

From the start it has to be noted that in the model scat-
tering amplitudes can be found comparatively easily only
for hadron–nucleus collisions. They are given by a set of all
pomeron fan diagrams,which are summedby the non-linear
evolution equation of [2,3].Nucleus–nucleus collision ampli-
tudes are described in the model by complicated equations,
whose solution is quite difficult to obtain even numerically
(see [5] for partial results). Happily, as was shown in [6], due
to Abramovsky–Gribov–Kancheli (AGK) cancellations [7],
to find the single inclusive distributions one does not have
to solve these equations, but only to sum the appropriate
sets of fan diagrams, that is to solve the much simpler
hadron–nucleus problem. Still the latter problem involves
a numerical study of considerable complexity. So up to now
there has been no consistent calculation of the jet spectra
for realistic nuclei at very high energies, although some
preliminary attempts has been made in [8–11]. In all cases
however the authors relied on very drastic simplifications,
from the start choosing for the nuclear structure and/or for
the gluon distributions in the colliding nuclei some prim-
itive explicit forms in accordance with their own tastes
and prejudices. In fact these forms appear to be rather far
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from the realistic ones, which correspond to actual par-
ticipants and follow from the calculations. This gave us
the motivation to calculate numerically the jet spectra in
hadron–nucleus and nucleus–nucleus collisions as predicted
by the hard pomeron model in a consistent manner.

Another goal of the present calculations has been to
compare the results obtained on the basis of the expres-
sion for the inclusive cross-section which follows from the
AGK rules applied to the diagrams with QCD pomerons
interacting via the three-pomeron coupling [6] with a some-
what different expression obtained from the color dipole
picture [12]. Our calculations show that these two formally
different expressions lead to completely identical results at
momenta of the order of or higher than the value of the
so-called saturation momentum Qs. At momenta substan-
tially lower than Qs the color dipole cross-sections differ
from the ones from the AGK rules by a universal constant
factor ∼ 0.7 ÷ 0.8.

In both cases the A-dependence of the spectra at mo-
menta below Qs is found to be suppressed as compared
to the naive probabilistic expectations, which predict that
it should follow the number of binary collisions, ∝ A for
pA scattering and ∝ A4/3 for AA scattering at fixed im-
pact parameter. Instead we have found a behavior damped
by roughly a factor A1/3, that is ∝ A0.7 for pA collisions
and ∝ A for central AA collisions. Since Qs grows with
energy very fast, the region where the spectra behave in
this manner extends with energy to include all momenta
of interest. At momenta greater than Qs the spectra grow
faster but still much slowlier than the number of binary
collisions (a numerical fit gives something like ∝ A1.1 for
central AA collisions).

Note that in the last years a few more phenomenolog-
ically oriented studies of particle production in nucleus–
nucleus production at very high energies have been pre-
sented, in the framework of the color-condensate model [13]
solved in the classical approximation on the lattice [10] and
in the saturation model [11]. In both approaches the quan-
tum evolution of the nuclear gluon density was neglected
and the saturation momentum was introduced as a param-
eter fitted to the experimental data at RHIC. Although
some of their predictions (proportionality of the multiplic-
ity to A modulo logarithms) agree with our calculations
with full quantum evolutions, the quantitative results are
rather different. We postpone a more detailed discussion
of this point until the section with our conclusions.

The results of this study continue and extend the ones
published in [14]. As compared to that publication we ex-
plore the y-dependence of the cross-sections and, apart
from AA central collisions, study pA collisions as well. We
also concentrate on energies accessible in the near future
(at LHC) to be closer to the experimental situation. Still
we have to stress that our results do not pretend to de-
scribe the existing data obtained at RHIC. As mentioned,
the perturbative QCD pomeron model studies phenomena
at very high energies, at which the coupling constant be-
comes sufficiently small. The characteristic energetic vari-
able for the model is the scaled rapidity Ȳ = (Ncαs/π)Y .
One observes that the solution of the non-linear evolution
equation acquires its standard scaling form, independent

of the choice of the initial conditions, at Ȳ > 1.5÷2. With
αs ∼ 0.2 this sets the lower limit for the rapidity at the
center, at which our results can be applied, to be 7.5÷ 10,
which implies the overall rapidity for the collision in the
region 15 ÷ 20. This is much higher than the rapidities at
RHIC but well within the possibilities of LHC. So we may
hope that our predictions can be tested at LHC, but we
have little chance of success for the data from RHIC. In
relation to the latter the model can possibly indicate some
trends of the observable cross-sections with the growth of
energy, much in the same manner as it predicted the growth
of the total cross-sections with energy at the time of its
appearance (although the rate of this growth was grossly
overestimated). The proportionality of the spectra to the
number of participants and not to the number of binary
collisions that was found well agrees with the experimental
findings and is one of these trends.

2 Basic equations

2.1 Total cross-sections

As mentioned in the Introduction, the scattering amplitude
can be relatively easily found for hA collisions but not for
AB collisions. Correspondingly here we present formulas
which serve to calculate the total cross-sections for hadron
(proton)–nucleus collisions. This cross-section is given by
an integral over the impact parameter b and the pomeron
transverse dimension r as follows:

σA(y) = 2
∫

d2bd2rρ(r)Φ(y, r, b). (1)

Here y is the overall rapidity, ρ(r) is the color dipole den-
sity of the projectile (proton) and Φ(y, r, b) is the color
dipole–nucleus cross-section at fixed y, r and b, given by
the sum of all fan diagrams stretched between the projectile
and nucleus.

The function φ(y, r, b) = Φ(y, r, b)/(2πr2), in the mo-
mentum space, satisfies the well-known non-linear equa-
tion [2, 3]

∂φ(y, q, b)
∂ȳ

= −Hφ(y, q, b) − φ2(y, q, b), (2)

where ȳ = ᾱy, ᾱ = αsNc/π, αs and Nc are the strong cou-
pling constant and the number of colors, respectively, and
H is the BFKL Hamiltonian. Equation (2) has to be solved
with an initial condition at y = 0. For the heavy nucleus
at rest it is determined by the color dipole distribution in
the proton smeared by the profile function of the nucleus.
In our calculations we take this distribution in accordance
with the Golec-Biernat distribution [15], duly generalized
for the nucleus:

φ(0, q, b) =
1
2

ATA(b)σ0f(q), (3)

where

f(q) = − 1
2

Ei(−x), x =
q2

0.218 GeV2 , (4)
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σ0 = 20.8 mb and TA(b) is the standard nuclear profile
function, which we have taken from the Woods–Saxon nu-
clear density.

To write the final formula for the cross-section we have
to find the dipole distribution ρ(r) in the incoming proton,
consistent with the initial condition (3). To this end we use
the expression for the initial condition in terms of ρ(r) [3]:

Φ(0, r, b) =
1
2

ATA(b)g4
0∇−4ρ(r), (5)

where g0 is the strong coupling constant at a very low scale
determined by the intrinsic momenta inside the proton.
This translates into the relation in the momentum space:

ρ(q) = − 2πσ0

g4
0

f2(q), f2(q) =
(

d
d ln q

)2

f(q). (6)

We also introduce the gluon density function

h(y, q, b) = q2∇2
qφ(y, q, b) =

(
d

d ln q

)2

φ(y, q, b) (7)

to finally obtain

σA(y) =
σ0

8π2α2
s0

∫
d2bd2qf2(q)h(y, q, b), (8)

where αs0 = g2
0/(4π) refers to the scale inside the proton.

Of course the structure of the proton is non-perturbative,
so that αs0 emerges as a new parameter in the model related
to hadronic processes.

Note that with these normalizations the cross-section
at y = 0 corresponds to a pure double gluon exchange.
A better approximation consists in using an eikonalized
ansatz for the initial condition:

Φ(0, r, b) → 1 − e−Φ(0,r,b). (9)

From the formal point of view this implies including higher
orders in 1/N2

c and so cannot be justified. Also, as follows
from the calculations, already at ȳ = 1 the eikonalization
becomes forgotten and the results with eikonalized and
non-eikonalized initial conditions are practically the same.
Still at y = 0 they are different and the cross-section with-
out eikonalization is found to be unreasonably large. For
this reason we use the eikonalized initial condition for the
total hA cross-sections at low y and the non-eikonalized
one elsewhere.

2.2 Inclusive cross-sections and multiplicities

In the study of inclusive cross-sections we have to distin-
guish the overall rapidity of the collision Y and the rapidity
of the produced particle y. Our basic quantities will be the
inclusive cross-sections IA(y, k) and IAB(y, k) to produce
a jet with the transverse momentum k at rapidity y in a
collision of a proton off a nucleus with the atomic number
A or two nuclei with atomic numbers A and B:

IA(B)(y, k) =
(2π)2dσA(B)

dyd2k
. (10)

Both cross-sections can be represented as an integral over
the impact parameter b:

IA(B)(y, k) =
∫

d2bIA(B)(y, k, b). (11)

We shall study the pA cross-section as it stands, but for
the nucleus–nucleus case our study will be restricted to
the inclusive cross-sections at a fixed impact parameter
b = 0 (central collisions) and identical nuclei, A = B. To
simplify notation we shall denote the AA cross-sections
also as IA in all places where it cannot lead to confusion.
The corresponding multiplicities at a fixed rapidity y will
be given by

µA(y) =
1

σA

∫
d2k

(2π)2
IA(y, k) (12)

for the pA case and

µAA(y) =
1

σAA(b = 0)

∫
d2k

(2π)2
IAA(y, k, b = 0), (13)

for the AA case, where σA and σAA(b) are the total inelastic
cross-sections for the pA collision and for the collision of
two identical nuclei at the fixed impact parameter b. For
heavy nuclei one expects that σA(b = 0) � 1, so that
the multiplicity (13) is just the integral of the inclusive
cross-section over momenta.

As argued in [4], in the perturbative QCD with a large
number of colors the nucleus–nucleus interaction is de-
scribed by a set of tree diagrams constructed with BFKL
pomeron Green functions and triple pomeron vertices for
their splitting and fusing. The structure of the interaction
at the vertex is illustrated in Fig. 1, in which horizontal
lines correspond to real gluons produced in the intermediate
states and vertical and inclined lines describe propagating
reggeized gluons. From this structure one sees that the
produced gluons are contained in the intermediate states
of the interacting pomerons, so that to get the inclusive
cross-section one has to “open” these pomerons, that is to
fix the momentum of one of the intermediate real gluons
in them. For pA collisions this leaves the diagrams of the
type shown inFig. 2a. For the nucleus–nucleus case a similar
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Fig. 1. Interaction of three BFKL pomerons at the split-
ting vertex
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Fig. 2a–e. Typical diagrams for the
inclusive cross-section in nucleus–
nucleus collisions

production mechanism in the old-fashioned local pomeron
model was proven to lead to inclusive cross-sections given
by a convolution of two sets of fan diagrams connecting
the emitted particle to the two nuclei times the vertex for
the emission (Fig. 2b). The proof was based on the AGK
rules appropriately adjusted for the triple pomeron inter-
action [16]. It was later shown in [17] that the AGK rules
are fulfilled for interacting BFKL pomerons. So the same
arguments as in [16] allow one to demonstrate that for
collisions of two nuclei the inclusive cross-section will be
given by the same Fig. 2b, that is, apart from the emission
vertex, by the convolution of two sums of fan diagrams,
constructed of BFKL pomerons and triple pomeron ver-
tices, propagating from the emitted particle towards the
two nuclei [6].

Taking into account the form of the emission vertex [6]
we obtain for the pA case

IA(y, k) =
8Ncαs

k2

∫
d2βd2reikr∆Ψ(Y − y, r) ·∆Φ(y, r, β),

(14)
and for the AA case at b = 01

IAA(y, k) (15)

=
Ncαs

π2α2
s0k

2

∫
d2βd2reikr∆Φ(Y − y, r, β) · ∆Φ(y, r, β).

Here Ψ(y, r) is a pomeron at rapidity y and of the transverse
dimension r coupled to the incoming proton. Its normal-
ization at y = 0 is

Ψ(0, r) =
2Φ(0, r, b)
g4
0ATA(b)

(16)

(obviously the right-hand side of (16) does not depend on
b). The ∆’s are two-dimensional Laplacians applied to the
Ψ and Φ’s.

Later from the color dipole formalism a slightly different
form for the inclusive cross-section was derived in [12]. For
the dipole–nucleus scattering case it corresponds to chang-
ing

2Φ(y, β, r) → 2Φ(y, β, r) − Φ2(y, β, r). (17)

Note that in [12] it was stated that the change was from the
“quark dipole” Φ to the “gluon dipole” 2Φ − Φ2. As seen
from (17) it is not. In fact the change is from two quark

1 A slightly different coefficient as compared to [14] is due to
a different normalization of Φ.

dipoles to a gluon one: 2Φ → 2Φ − Φ2. This is equivalent
to adding to the AGK contribution (15) a new one which
has the meaning of the emission of the gluon from the
triple pomeron vertex itself. Such a contribution is not
prohibited in principle. From our point of view, taking
into account the structure of the vertex shown in Fig. 1,
its appearance is difficult to understand. However in this
paper we do not pretend to discuss the validity of the two
proposed formulas for the inclusive cross-sections on the
fundamental level, leaving this question for later studies.
Rather we shall compare the cross-sections which follow
from them after numerical calculations.

For the pA case this recipe implies taking into account
a new diagram shown in Fig. 2c. As a result, one finds,
instead of (14), the Kovchegov–Tuchin (KT) cross-section

IKT
A (y, k) =

4Ncαs

k2

×
∫

d2βd2reikr (18)

×∆Ψ(Y − y, r) · ∆[2Φ(y, r, β) − Φ2(y, r, β)].

For the nucleus–nucleus case the recipe of [12] implies
taking into account the two new diagrams for the inclu-
sive cross-sections shown in Fig. 2d,e. The nucleus–nucleus
cross-section thus becomes

IKT
AA(y, k) =

Ncαs

2π2α2
s0k

2

×
∫

d2βd2reikr [2∆Φ(Y − y, r, β)∆Φ(y, r, β)

−∆Φ(Y − y, r, β)∆Φ2(y, r, β)

−∆Φ2(Y − y, r, β)∆Φ(y, r, β)
]
. (19)

Passing in our formulas to the momentum space we find
(suppressing the dependence on y and β)

∆Φ(r) → 2πq2∆qφ(q) ≡ 2πh(q). (20)

Introducing also a function similar to h for the pomeron Ψ :

∆Ψ(r) = 2πh(0)(q) (21)

we can express the cross-sections (14) and (15) via the
gluon distributions h(0)(q) and h(q) in a factorized form:

IA(y, k) =
8Ncαs

k2

∫
d2βd2qh(0)(Y − y, q)h(y, k − q, β),

(22)
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and for the AA case at b = 0

IAA(y, k) =
Ncαs

π2α2
s0k

2

∫
d2βd2qh(Y − y, q, β)h(y, k − q, β).

(23)
The KT cross-section contains an additional term

X(r) = −∆Φ2(r) = −∆(2π)2r4φ2(r). (24)

We transform it to the momentum space:

X(q) = q2
∫

d2re−iqrΦ2(r) = (2π)2q2
∫

d2r
(
r2φ(r)

)2
.

(25)
On the other hand

r2φ(r) = −
∫

d2q′

(2π)2
eiq′r∆′φ(q′). (26)

So we get

X(q) = q2
∫

d2q1∆φ(q1) · ∆φ(q − q1). (27)

Taking into account that

∆φ(q) = −2πδ(q) +
h(q)
q2 (28)

gives

X = −4πh(q) + q2
∫

d2q1

q2
1(q − q1)2

h(q1)h(q − q1). (29)

This should be added to the first term in the 2nd factor
of the integrand in (18), which according to (20) is just
4πh(q). So in the end in the KT cross-section instead of
4πh(q) will appear the second term in (29). Introducing
the function

w(q) =
q2

2π

∫
d2q1

q2
1(q − q1)2

h(q1)h(q − q1), (30)

we finally find that the KT cross-section is obtained from
the AGK cross-section by the substitution h(q) → w(q)/2:

IKT
A (y, k) =

4Ncαs

k2

∫
d2βd2qh(0)(Y − y, q)w(y, k − q, β).

(31)
Now we pass to the nucleus–nucleus cross-section. For

different colliding nuclei the KT rule means (see Fig. 2)

2∆ΦA(r) · ∆ΦB(r) →
2∆ΦA(r) · ∆ΦB(r) − ∆ΦA(r) · ∆Φ2

B(r)

−∆Φ2
A(r) · ∆ΦB(r) (32)

where we again suppress all other arguments in Φ evident
from (19). Going to the momentum space, we have

∆Φ(r) → 2πh(q), −∆Φ2(r) → −4πh(q) + 2πw(q), (33)

and we shall find the KT cross-section at a given impact
parameter β as follows:

IKT
AB(y, k, β) =

Ncαs

2π2α2
s0k

2

×
∫

d2bd2q [hA(Y − y, q, β − b)wB(y, k − q, b)

+wA(Y − y, q, β − b)hB(y, k − q, b)

− 2hA(Y − y, q, β − b)hB(y, k − q, b)] . (34)

For central collisions of identical nuclei at mid-rapidity this
simplifies to

IKT
AA(Y/2, k, 0) =

Ncαs

π2α2
s0k

2

×
∫

d2bd2qh(Y/2, q, b)

× (w(Y/2, k − q, b) − h(Y/2, k − q, b)) . (35)

So in the end the KT cross-sections can also be expressed
via the function h(q).

The function h(y, k, β) has the normalization prop-
erty [6] ∫

d2k

k2 h(y, k, β) = 1 (36)

and at sufficiently high y acquires the scaling property

h(y, kβ) = h (k/Qs(y, β)) , (37)

where Qs(y, β) is the above-mentioned saturation momen-
tum. From (36) and (37) one easily establishes some prop-
erties of the new function wA. Obviously it scales with the
same saturation momentum when hA does,

w(y, kβ) = w (k/Qs(y, β)) . (38)

At k → ∞ it has the asymptotic

w(y, k, β)k→∞ ∼ 2h(y, k, β) (39)

and finally

∫
d2kw(y, k, β) = 2

∫
d2kh(y, k, β). (40)

These properties immediately allow one to make some
preliminary comparisons between the cross-sections given
by (22) and (23), on the one hand, and (31) and (34), on the
other. Obviously if k/Qs is large both expressions give the
same cross-section due to (40). In the opposite limit of small
k/Qs, the scaling property allows one to conclude that the
ratio of the two cross-sections is a universal constant which
does not depend on y, nor on A nor on β. Our numerical
results confirm these predictions.
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3 Results

Our cross-sections depend on three parameters, σ0 and two
coupling constants αs at the comparatively large evolution
scale and αs0 at the very low proton scale. As mentioned,
we have a certain control on the value of σ0 from the
experimental data on the proton structure function at low
x, embodied in the parametrization (3) borrowed from [15].
However we can have only very general ideas about the
possible values for the coupling constant at the two scales
involved, since the coupling constant is not running in the
model. The common wisdom is to take αs = 0.2, which is
considered to be the value reached by the running coupling
at relatively low scales. In our calculations we have taken
this value for the evolution equation and for the production
vertex.Howeverwith the samevalue forαs0 wefind the total
pp and pA cross-sections at low energies to be roughly four
times greater than the experimental data. To bring them
into the physically reasonable range we have to double the
value of αs0. So in our calculations we have taken αs0 = 0.4.

3.1 The gluon densities and saturation momentum

The gluon density in the nucleus is, up to a numerical coef-
ficient, given by the function h(y, k, b) introduced in (7) [3]:

d[xG(x, k2, b)]
d2bd2k

=
2Nc

πg2 h(y, k, b), y = ln
1
x

. (41)

The role of h as the gluon density is clearly illustrated in the
factorized forms of the inclusive cross-sections (22) and (23)
for pA and AA collisions. In the KT inclusive cross-section
for hA collisions the function h(y, k, b) is however substi-
tuted by (1/2)w(y, k, b), which can also be considered an
effective gluon density taking into account the contribution
from the emission vertex. Both densities are well defined
for fixed b. As mentioned, at ȳ ≥ 1 they acquire a scaling

behavior and depend only on the ratio k/Qs(y, b) where
Qs is the saturation momentum. In the minimum bias pA
collisions and in AB collisions at a fixed impact parameter
they are smeared out over the nucleus transverse space. In
Fig. 3 we illustrate the gluon densities h and w at b = 0 for
A = 180 and ȳ = 2, which, with our value for αs, corre-
sponds to y ∼ 10. As one observes, both functions have the
same form, with a clear maximum at a certain value of k.
This value for h is the value for the saturation momentum
Qs [18]. For w the maximum is somewhat shifted towards
higher momenta and the value of (1/2)w at the maximum
is lower than that for h. As is clear from our formulas for
the inclusive cross-sections, these two properties have op-
posite effects, so that in the end the inclusive cross-sections
derived from AGK and introduced by KT as a result are
practically equal. In Fig. 4 we show the dependence of the
saturation momentum Qs on b for A = 180 and at ȳ = 2.
Its form closely follows the nuclear density TA(b) reaching
3.8 GeV/c at the center and dropping to 0.25 GeV/c and
lower at its periphery.

3.2 pA cross-sections

Passing to pA cross-sections we start with the total cross-
sections (8). They are shown in Fig. 5 as a function of y
for A = 9, 27, 64, 108 and 180, divided by A2/3 to compare
with purely geometric cross-sections. As one observes, the
cross-sections become strictly geometric at ȳ � 1.2. At
lower energies they grow faster than A2/3, at higher energies
they grow much slowlier, approximately as A0.2. This can
be explained by the role of peripheral parts of the nucleus,
whose contribution grows with energy due to the absence
of non-linear damping effects and is relatively greater in
lighter nuclei.

Inclusive cross-sections were calculated at the overall
rapidity Ȳ = 4, which corresponds to the natural rapidity
∼ 20. Inclusive cross-sections corresponding to (14) are
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shown in Figs. 6–8. Absolute values for the inclusive cross-
sections are presented in Fig. 6 for A = 108 at central
rapidity (y = Y/2). At k < Qs they are ∝ 1/k2, so that
the integral factor in (14) is practically constant. At k > Qs
the cross-sections fall more rapidly. At k 	 Qs they behave
as∼ 1/k3.1. However this asymptotic is only reached at very
high nomenta ∼ 105 GeV/c. In Fig. 7 we show the inclusive
cross-sections for A = 108 at different rapidities relative to
the central rapidity. As expected, the cross-sections grow
towards the projectile region, since the rapidity of the pure
pomeron factor is growing in this region. The A-dependence
of the inclusive cross-sections is different at low momenta,
below Qs and high momenta, much larger than Qs. This is
illustrated in Fig. 8, where we plot (9/A)0.745IA(k)/I9(k).
It is clearly seen that at low momenta the cross-sections
are ∝ A0.745 whereas at high momenta they grow faster
with A, approximately as A0.9. In any case their growth

with A is damped as compared with naive probabilistic
expectations which predict them to be ∝ A.

Passing to the determination of multiplicities one has
to observe a certain care because of the properties of the
perturbative QCD solution in the leading approximation
embodied in (14) and (15). As follows from these formulas
inclusive cross-sections blow up at k2 → 0 independently
of the rapidity y. So the corresponding total multiplicity
diverges logarithmically. However, the physical sense has
only emission of jets with high enough transverse momenta.
Thus one has to cut the spectrum from below by some kmin
which separates the spectrumof jets proper from soft gluons
which are not related to jets. Inevitably the multiplicity
of the jets thus defined depends on the chosen value of
kmin. We have chosen kmin = 2 GeV/c. In Fig. 9 we show
multiplicities at Ȳ = 2 divided by A2/3 as a function of the
rapidity y. One observes that on the whole the multiplicities
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sections at Ȳ = 4 and y = Y/2. Curves from
bottom to top on the right correspond to A =
27, 64, 108 and 180



M.A. Braun: Jet production in pA and AA collisions in the perturbative QCD pomeron model 459

0

20

40

60

80

100

120

140

0.2 0.3 0.4 0.5 0.6 0.7 0.8

µ A
/A

2/
3

y/Y

Y=4π/(3αs)

Fig. 9. pA multiplicities at Ȳ = 4, divided by
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are roughly ∝ A2/3. They diminish with y, except at very
small y, which is natural, since the non-linear damping of
the gluon density grows as one goes up along the fans.

Finally we pass to the cross-sections obtained with the
KT formula (18). In Fig. 10 we show the ratios of these
cross-sections to the ones defined by the AGK rules, (14),
for Ȳ = 4 and y = Y/4, Y/2 and (3/4)Y . These ratios
turn to unity at k above Qs, as discussed in the end of the
preceding section. Below Qs the ratios are in the region
0.72÷ 0.87 with little dependence on A. Some dependence
which is left can be explained by the fact that for the BFKL
pomeron attached to the projectile the scaling regime is
not valid and that for very peripheral parts of the nucleus it
can only be reached at rapidities well above the considered
ones. Due to this very simple relation between the two cross-
sections, all conclusions about the A-dependence drawn for
the AGK cross-section (14) remain valid also for the KT
cross-section (18).

3.3 AA collisions

As mentioned, we only considered central collisions of iden-
tical nuclei (A = B and b = 0). The inclusive cross-sections
obtained from the AGK rules (see (15)) are shown in
Figs. 11–13. Figure 11 presents absolute values for the in-
clusive cross-sections for A = 108 at center rapidity and
different overall energies corresponding to Ȳ = 2, 4 and
8. As for pA collisions, at k < Qs their behavior is to-
tally determined by the 1/k2 factor in (19), the integral
factor being practically independent of k. At very high
momenta IA(Y, y = Y/2, k) ∼ 1/kp(y) with power p(y) di-
minishing with energy. From our calculations we find that
p(y) � 3.3, 3.0 and 2.7 at ȳ = 2, 4 and 8 respectively. At
infinite energies p seems to tend to 2 in correspondence
with Qs → ∞. To see the dependence on the rapidity y of
produced particles, in Fig. 12 we show the cross-sections at
different y for A = 108 and the overall rapidity Ȳ = 4. As

expected the cross-sections steadily diminish towards the
edges, their form not changing seriously. The A-dependence
of the cross-sections is illustrated in Fig. 13 where we show
the ratio (9/A)IA/I9(k) at mid-rapidity for the overall ra-
pidity Ȳ = 4. As in the pA case, we observe scaling at
momenta below Qs, which tells us that at such k the cross-
sections are ∝ A with a good precision. At momenta higher
than Qs they grow with A faster. In our calculations we
found that at very high momenta the cross-sections grow
as ∝ A1.1, that is much slowlier than A4/3 as expected
from probabilistic considerations.

Multiplicities µ(y) are obtained in AA case from the
integration of IA(y, k) over k ≥ kmin = 2 GeV/c. In Fig. 14
we show them divided by A for different y at the overall
rapidity Ȳ = 4. We see approximate scaling. However the
multiplicities in fact grow somewhat faster than A, which
is explained by the contribution of the high momentum tail
of the spectra. The change of the form of the y-dependence
with the overall energy is illustrated in Fig. 15 where we
plot µ(y)/µ(Y/2) at Ȳ = 2, 4 and 8 for A = 180. One
observes that the peak of the multiplicity at mid-rapidity
becomes narrower with the growth of energy.

All cross-sections discussed so far were obtained from
the expression (15) derived from the AGK rules. We fi-
nally discuss the AA cross-sections described by the KT
formula (19). As for the pA case we present the ratios of the
latter cross-sections to the AGK cross-sections in Fig. 16.

These ratios do not practically depend on A, so we
show them for A = 180 and different y at the total energy
corresponding to Ȳ = 4. Their behavior is quite similar to
the pA case. At momenta below Qs the KT cross-sections
are somewhat smaller than the AGK ones. Their ratios
grow with y from ∼ 0.6 at ȳ = 0.5 to ∼ 0.8 at ȳ = 2 (mid-
rapidity). Note that at ȳ = 0.5 the lower part of the gluon
distribution is still quite far from its asymptotic (scaling)
form. So the values for the cross-section at this rapidity
preserve a good deal of their dependence on the initial
conditions and are not characteristic for the fully evolved
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Curves from bottom to top correspond to
A = 9, 27, 64, 108 and 180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

µ(
y)

/µ
(Y

/2
)

 2y/Y

Fig. 15. The form of AA multiplicities at dif-
ferent energies for A = 180. Curves from top
to bottom correspond to Ȳ = 2, 4 and 8

dynamics of nuclear interaction. At momenta much higher
than Qs all ratios tend to unity, so that the KT recipe gives
the same results as the AGK one.

4 Conclusions

We have calculated the inclusive cross-sections and multi-
plicities for gluon production in proton–nucleus collisions
and nucleus–nucleus central collisions in the perturbative
QCD hard pomeron approach with a large number of colors.
Realistic nuclear densities were employed to account for the
peripheral parts of the nuclei, whose contribution rapidly
grows with energy due to the smallness of the unitarizing
non-linear effects. In contrast to the structure functions,
hadronic processes required the introduction of a new pa-
rameter in the model, the value of the strong coupling

cosntant at very small energies corresponding to the pro-
ton structure.

The form of the cross-sections is found to be determined
by the value of the saturation momentum Qs, which de-
pends on the rapidity and nuclear density. At momenta
much lower than Qs the spectrum is proportional to 1/k2.
Its A-dependence is close to A0.7 for pA collisions and linear
for AA collisions at b = 0. At momenta much higher than
Qs the spectrum is found to fall approximately as 1/k2.7÷3.3

with the A-dependence as ∼ A0.9 for pA and ∼ A1.1 for
AA collisions. The multiplicities are found to be propor-
tional to A0.7 for pA and A for AA collisions. Their peak at
mid-rapidity for AA collisions becomes more pronounced
with the growth of energy.

We also compared two different forms for the inclu-
sive cross-section, which follow from the AGK rules or the
dipole picture. The difference between their predictions was
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found to be absent for values of momenta larger than Qs.
At momenta smaller than Qs the difference reduces to a
universal constant factor: the dipole cross-sections are just
∼ 0.7 ÷ 0.8 of the AGK cross-sections. With the growth
of energy this factor slowly grows towards unity, so that
it is not excluded that at infinite Y the two cross-sections
totally coincide at all values of momenta. All our conclu-
sions about the energy, momentum and A-dependence are
equally valid for both forms of the inclusive cross-sections.

As mentioned in the Introduction a few more phe-
nomenological studies of the gluon production in nucleus–
nucleus collisions were recently made in the classical ap-
proximation to the color-glass condensate model [10] and
in the saturation model of [11]. In both studies quantum
evolution was neglected, so that scaling with the satura-
tion momentum Qs was postulated rather than derived.
The saturation momentum thus appeared as an external
parameter, whose A- and Y -dependence were chosen on
general grounds and whose values were fitted to the exper-
imental data at RHIC. In both models the multiplicities
turned out to be proportional to the number of participants
(modulo logarithmic dependence on A). This agrees with
our results. However the form of the inclusive distributions
in momenta found in [10] is different from ours. Its behavior
both at small k (∼ 1/

√
k2 + m2 with m = 0.0358Qs) and

at large k (∼ 1/k4) disagrees with the form of the spectrum
we have found. For realistic nuclei the spectrum was cal-
culated in [10] only up to 6÷ 7 GeV/c, so it is not possible
to see if any change in its A-behavior will occur at higher
momenta. The value of the saturation momentum and the
speed of its growth with rapidity which we have found from
the QCD pomeron model with full quantum evolution are
larger than the fitted values in both [10] and [11]. This is no
wonder in view of a very high value of the BFKL intercept
in the leading approximation which is obtained with the
value for the strong coupling constant at present energies.
From the phenomenological point of view this is the main
drawback of the BFKL theory. To cure it one possibly
has to include higher orders of the perturbation expansion

and the running coupling constant. Although some work
in this direction has been done for linear evolution [19],
no attempts to generalize this to non-linear evolution in
some rigour has been made yet. As it stands, the model
can pretend to describe the data at energies considerably
above the presently achieved. One may hope that future
data from experiments at LHC will be more suitable for
the theoretical analysis in the framework of the model. Of
course, the use of a fixed coupling constant in the model
casts certain doubts on its applications. However, with a
modest change in rapidity the corresponding change of the
running coupling is also very modest. So one expects the
effects of the running to be pronounced only at very large
rapidity distances. Calculations in which the running of the
coupling was introduced in some primitive manner have
shown that even at superhigh energies the resulting change
is not dramatic [20]. So we remain optimistic about the
application of the model to the experimental results in the
several-TeV region.
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